# Improving Fleet Utilization - A **Comprehensive Analysis With Solutions For Shipment Brokerage** Market Entry

Austin S. Bohlin, Abhiram Chilukuri , Aditya Uppuluri , Nai-Wei Lu , Hammad Nabi Khan, Matthew A. Lanham

Purdue University, ,Mitchell E. Daniels, Jr. School of Business abohlin@purdue.edu; achiluk@purdue.edu; auppulur@purdue.edu; lu983@purdue.edu; khan430@purdue.edu; lanhamm@purdue.edu



## **BUSINESS PROBLEM FRAMING**

- A major problem in truck transportation: Deadhead mile
- Fleet utilization optimization is crucial to solving the problem of deadhead miles, and calculate the profit generated by them
- Conduct marketing analysis to determine whether to buy or build a brokerage company
- By improving fleet utilization and exploring the feasibility of building a brokerage company, our client can reduce deadhead miles and generate profits

## DEADHEAD

- Deadhead miles are the number of miles that truckers drive without any cargo on their return trip
- For company, deadhead mile results in loss of profits and generates fuel and maintenance costs for companies
- For truckers, driving without cargo is dangerous
- For environmental, deadhead miles increase exhaust emissions and contribute to road destruction



Fig 1. Deadhead explanation



### ANALYTICS PROBLEM FRAMING

- Assumptions:

- with Naïve Model:

# **Opportunity = \alpha^{\*}((R^{\*}D^{\*}V) - (V^{\*}D^{\*}M^{\*}F)) =**



### **BETWEENNESS OF LOCATIONS**



### Deadhead calculation approach:

Take the difference between trips on lane (A->B) and reverse lane (B->A) to find volume of deadheads (V)

All trips made to a location have a return trip to the origin Carriers don't have both nodes as origins

Calculation of the opportunity generated by the reduction of deadhead miles

| es | Fuel | #Deadhead | Demand | Revenue | Safety Factor |
|----|------|-----------|--------|---------|---------------|
|    | F    | V         | D      | R       | α=0.7         |

• Comparing overall network: The size of the warehouses denotes the betweenness of locations. Greenfield has the highest incoming and outcoming deadheads, followed by Monmouth, Tar Heel, Kansas, Junction City, Cudahy, and Crete.



### METHODOLOGY



Fig 3. Methodology

Step 1: Identify all the deadheads

• Step 2: Calculate the profit generated by the deadheads

• Step 3: Based on the profit, conduct market analysis and calculate the possible costs of building or buying a brokerage company

Step 4: Provide complete information for our client to help them in decision making



Fig 4. Data

## ESTABLISHMENT OF BROKERAGE COMPANY

- Operating cost for building a brokerage company
- Suggested organization structure for the brokerage company



### Fig 6. Brokerage company cost structure



### Fig. 7 Brokerage company organization structure

## BREAKEVEN ANALYSIS

With 12.34% of Return on Investment, the brokerage firm will be breaking even at the end of the 3rd year.



Fig 8. Cash flow diagram

# ACKNOWLEDGEMENTS

We would like to thank our industry partner for their guidance and support on this project as well as the Purdue MS BAIM program for partially funding this work.

